
1.  Introduction
Building a dynamical core for the atmospheric model is an art of balancing the requirements between accu-
racy and efficiency. Although a model's accuracy can be more definitive to measure in benchmark experi-
ments—at least for smooth solutions, computational efficiency is a relative concept that strongly associates 
with the computing platform characteristics. In a way, the available computational power and machine ar-
chitectures have been dictating the scope of the research topics and the design of the numerical simulation. 
For example, coming out of the wide adoption of the massively parallel computing, many modern models 
prefer quasi-uniform computational grids, such as the icosahedral (Du et  al.,  2003; Ringler et  al.,  2000; 
Rípodas et al., 2009; Tomita et al., 2001) and cubed-sphere grids (Adcroft et al., 2004; Marras et al., 2015; 
Putman & Lin,  2007), over the traditional latitude-longitude grids to evenly distribute the computation 
tasks over a large number of processors. However, the concepts of both icosahedral and cubed-sphere grids 
were explored very early in Sadourny et al. (1968), Sadourny (1972), and Williamson (1968), but gained very 
little attention. During this time, single-processor-based latitude-longitude or Gaussian spectral methods 
demonstrated excellent efficiency in delivering accurate results (Bourke, 1972, 1974)—a perfect example of 
the evolving standard of the numerical algorithm efficiency.

The essential motivation of implementing the quasi-uniform grids is to transform the severe two paral-
lel-unfriendly singular points from the latitude-longitude grid (the north and south poles) to less severe 
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eight singularities in the cubed-sphere grid (corners of the six cubed-sphere tiles) or 12 singularities in the 
icosahedral grid (pentagon cells in a Voronoi perspective). Although the quasi-uniform grids avoid polar 
filters and other numerical damping schemes due to the polar singularities, they have both pros and cons. In 
some cases, the numerical artifacts and errors caused by the 12 icosahedral singularities are less severe than 
the ones caused by cubed-sphere corners. The cubed-sphere grid, however, has several desirable properties. 
First, many attractive high-order multi-dimensional algorithms achieved optimal computational efficien-
cy by taking advantage of logically Cartesian grids (i.e., rectangles) on each cubed-sphere tile (C. Chen & 
Xiao, 2008; Putman & Lin, 2007; Rossmanith, 2006; Taylor & Fournier, 2010; Ullrich et al., 2010). Second, 
the logical 3D cubic geometry on each cube-tile creates one additional dimension to the computational 
data structure, which offers more flexibility in the parallel computational optimization designs in both 
horizontal and vertical directions. Lastly, each tile of the cubed-sphere geometry has a significant similar-
ity with computational grids in regional models. In fact, with separately defined metric terms, the global 
cubed-sphere dynamical core requires almost no code change to convert into a regional solver in orthogonal 
grids. This property provides exceptional convenience and flexibility in unifying real-world applications and 
experimenting new algorithms with idealized validation tests.

The global circulation models (GCMs) cover a vast range of scales and operate on the most powerful 
high-performance computers available. Therefore, geophysical fluid models usually discretize the govern-
ing equations with various grid staggering choices (Arakawa & Lamb, 1977, namely A-, B-, C-, D-Grid) 
to gain numerical advantages in resolving the smallest waves. In particular, the C-Grid results in natu-
ral pressure gradient in the momentum equations and straightforward divergence representation (Adcroft 
et al., 2019); the D-Grid forms a perfect vorticity mode (Harris & Lin, 2013; Lin, 2004), which dominants 
large-scale to mesoscale atmospheric motions. With the recent rapid increase of computational power, the 
GCM community is pushing the model resolution aggressively to about a globally kilometer horizontal 
scale (Satoh et al., 2019; Stevens et al., 2019). At this scale, both divergence and vorticity play equally im-
portant roles. Therefore, the unstaggered discretization could be a balanced choice in global kilometer-scale 
model development.

Although most GCMs use staggered discretization, a few influential models utilize the A-Grid, including 
NICAM (Tomita et al., 2001) with a stencil-based scheme, and the E3SM (Taylor et al., 2020) and NEP-
TUNE/NUMA (Müller et al., 2019) with a compact Spectral-Element-based algorithm. Colocating the ve-
locity components and scalars with a stencil-based scheme has several unique and attractive advantages. 
It allows direct coupling between the explicitly simulated dynamical process and parameterized physics 
processes. No interpolation of the velocity components is required, therefore, eliminating errors associated 
with such practices. Furthermore, it can yield energy conservation in nonhydrostatic models. With colocat-
ed prognostic variables, it is possible to formulate a flux-form prognostic total-energy governing equation, 
thus automatically provide energy conservation to the models. Energy conservation is beyond the scope of 
the shallow-water implementation and will be extensively discussed in future work. Preliminary work has 
demonstrated promising results in Li and Chen (2019). Last but not least, unstaggered schemes are widely 
implemented in traditional computational fluid dynamics (CFD) applications. Many well-tested techniques 
can inspire the creation of algorithms in the geophysical fluid simulations.

Despite many efforts, historically, the unstaggered discretization was overwhelmed by staggered methods 
due to, at least, two primary considerations. One challenge is that compared with the staggered schemes, 
the unstaggered discretization tends to produce severe errors in resolving phase speed for waves with very 
short wavelengths. Additionally, it is more challenging to design numerically robust algorithms with an 
unstaggered grid. For example, an unstaggered central-differencing of gradient term could produce a so-
called “grid decoupling” problem and lead to checkerboard-pattern noise. Indeed, the long-term success of 
an unstaggered model depends on the proper treatments to accommodate the above difficulties.

To address the first concern, the previous installment of this work thoroughly investigated the dispersive and 
dissipative relations between different grid staggering choices and orders of accuracy (Chen et al., 2018). 
One of the principal findings is that with high-order algorithms, for example, using 3- or 5-points sten-
cil polynomial schemes, waves with problematic phase speeds will be largely pushed to four-grid-spacing 
and below. Increasing recent linear analysis on compact schemes, such as finite element, spectral-element 
methods, also found similar behavior (Ainsworth, 2014; Le Roux et al., 2020; Ullrich et al., 2018). On the 
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other hand, in practice, such smallest resolvable wavelengths are also contaminated by many sources of 
errors, such as numerical diffusion, strong gradients in the solutions, and, accordingly, heavily damped 
or removed by numerical techniques. Therefore, using high-order numerical schemes can prevent the un-
staggered model from problematic phase speeds. Additionally, since it is difficult to connect and generalize 
the linear dispersion analysis results in real-world applications, Chen et  al.  (2018) also introduced sim-
ple-to-setup tests to validate the dispersion and dissipation properties of any sophisticated solvers.

Unstaggered algorithms for geophysical flows can inherit various robust approaches from other fields. Un-
like the geophysical fluid modeling field, the general CFD community widely adopts unstaggered algo-
rithms via the implementation of the approximate Riemann Solvers. There is a small but growing literature 
that takes advantage of the Riemann Solvers in the A-Grid GCMs and achieved stability, high order accu-
racy, and are free of explicit diffusion (C. Chen & Xiao, 2008; Giraldo et al., 2002; Ullrich et al., 2010; Yang 
et al., 2010). However, compared with state-of-science GCMs, the traditional Riemann solvers can be less 
efficient or more diffusive. Moreover, the Riemann solvers with carefully designed mathematical expres-
sions are most effective in simulating generic flow types, including the vacuum, shock, sharp discontinui-
ties. Therefore, it is not easy to understand the Riemann solvers' inherent numerical properties and make 
the comparison to traditional GCM implementations. Lastly, traditional Riemann solvers require careful 
adjustments to make them accurate on the unique geometry on the Earth's surface with the gravity and the 
Coriolis forces.

The Low Mach number Approximate Riemann Solver (LMARS) introduced in Chen et al. (2013) is a highly 
efficient tool in the finite-volume method based GCMs. The design of LMARS bases on the fact that the ge-
ophysical flows do not create any vacuum or sharp discontinuities and the subsonic flows Mach number is 
always less than 1. The resulting simple mathematical expression of LMARS requires only one approxima-
tion, which assumes the sound wave speed (or gravity wave speed in a shallow-water model) is continuous 
at the finite volume interfaces. The LMARS discretization in a full 3D atmosphere takes the gravity into ac-
count and results in better accuracy than traditional Riemann solvers (Li & Chen, 2019). Previous work has 
implemented LMARS in many atmospheric applications, including hydrostatic and nonhydrostatic flows 
with either vertical Lagrangian coordinates or Eulerian coordinates (Chen et al., 2013). It is also imple-
mented in the multi-gas planet atmosphere environment with an intrinsic energy-conserving framework 
(Li & Chen, 2019). As a promising candidate for a new unstaggered GCM, LMARS is not yet tested with a 
cubed-sphere geometry.

This study aims to develop an LMARS-based unstaggered finite-volume shallow-water solver on the gno-
monic cubed-sphere grids. The shallow-water equations offer a standard testbed to validate the horizontal 
advection algorithms. Whereas previous studies implemented various cubed-sphere grids in different solv-
ers, this work is the first to unify arbitrary gnomonic cubed-sphere grid generation processes. Although the 
numerical discretization of LMARS on the cubed-sphere grid does not contain any explicit filter, this solver 
can still exhibit a broad range of diffusion properties by controlling the polynomial reconstructing methods 
and the strength of the forward-backward techniques (Mesinger, 1977). Lastly, various model numerical 
properties are illustrated and gauged by a comprehensive set of idealized tests, including the traditional fa-
mous Williamson et al. (1992) shallow water test suite, and a recently introduced colliding modons test (Lin 
et al., 2017). Given the traditional discussions about unstaggered grid dispersion uncertainties, this study 
designs a new “splash on the sphere” test to illustrate and warrant satisfactory dispersion and dissipation 
properties on specific wavelengths.

The remainder of the study is organized as follows. Section 2 provides a brief primer of the gnomonic cubed-
sphere grids, in which a unified grid generation process is introduced. Section 3 describes both spatial and 
temporal numeric discretization. The model is validated in Section 4. In this section, a novel splash on 
the sphere test is introduced to gauge the dispersion and dissipation properties. Finally, the main findings 
and discussions are concluded in Section 5. Appendix A collects all major symbols to make the notations 
consistent and clear. B provides a mathematical description of the grid generating process. The governing 
equations in the cubed-sphere grids are provided in C. In this section, some optimizations are discussed to 
yield more efficient mathematical expressions.
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2.  A Brief Primer on Gnomonic Cubed-Sphere Grids 
and the Duo-Grid System
The FV3 (Finite-Volume Cubed-Sphere Dynamical Core) (Harris & Lin, 
2013; Lin, 2004; Putman & Lin, 2007) has strongly influenced the devel-
opment of this study. Although being different in staggering choices, the 
new unstaggered dynamical core is designed to be a seamless evolution 
within the existing FV3 framework. Therefore, this work follows a signif-
icant amount of naming conventions from the existing FV3 code base, 
including grid type names and dynamical parameter definitions and sym-
bol names.

The cubed-sphere grid is obtained from projecting a gridded cube onto 
the surface of the sphere, which avoids the polar singularities due to the 
convergence of the meridians from the traditional latitude-longitude co-
ordinate system. The cubed-sphere grid shifts the severe polar conver-
gence of meridians to eight weaker singularities at the corners where 
cube tiles intersect. Figure 1 illustrates the mapping from the cube to the 
sphere in a C8 resolution. The naming convention C [N] denotes that 
each tile of the cube-sphere has N by N cell distribution, which results in 
N × N × 6 total cells on the sphere.

2.1.  Interlock Patterns

There are two conventional logical arrangements to interlock the six 
cubed-sphere tiles. Figure 2a illustrates the first pattern (Guba et al., 2014; 
Nair et al., 2005; Ronchi et al., 1996; Rossmanith, 2006; Yang et al., 2010) 

with four tropical tiles and two polar tiles, denoted by the “tropic-belt” logical arrangement. Unfortunately, 
the interlock between the tiles is not symmetric and require separate distinction for each of the tile. The sec-
ond pattern (Adcroft et al., 2004) is illustrated in Figure 2b, and denoted by the “staircase” logical arrange-
ment. The “staircase” logical arrangement has better symmetry when exchanging information between 
tiles. For example, the calculation of fluxes between two adjacent tiles needs to determine the tile numbers 
and the tile-local coordinates rotations. The “staircase” arrangement simplifies the neighbor tile-number 
and rotation patterns into two odd-index-tile (tiles 1, 3, 5) and even-index-tile (tiles 2, 4, 6) scenarios, illus-
trated by Figures 2c and 2d. Both logical arrangements are valid for cubed-sphere applications. This work 
implements the “staircase” arrangement to gain some programming simplicities.

2.2.  Unified Gnomonic Projections

The grid lines connecting the grid points are continuous great circles on the sphere. Therefore, the locations 
of vertices can uniquely determine the full grid system on each cube-sphere tile. On each tile, for example, 
the tile centered at  , (0,0)   , the vertices can be generated by either the gnomonic (Ronchi et al., 1996; 
Sadourny, 1972) or the conformal (McGregor, 1996; Rančić et al., 1996) projections. The gnomonic pro-
jection projects a Cartesian grid from six straight-lines-meshed cube surfaces to the sphere surface. The 
conformal projection maximizes the orthogonality of the coordinates. Putman and Lin (2007) examined the 
most popular approaches: the equidistant projection (Sadourny, 1972), the equiangular projection (Ronchi 
et al.,  1996), the more orthogonal conformal mapping (Rančić et al.,  1996), the numerical modification 
to analytical mappings by an elliptic solver (Khamayseh & Mastin, 1996) or the spring dynamics genera-
tor (Tomita et al., 2001). Considering the eight singularities at cube corners remain nonorthogonal in the 
conformal grid, and the cell size distribution in conformal grids is usually less uniform than the gnomonic 
choices, this work implements the gnomonic grid.

Figure 3 illustrates a typical gnomonic projection between a grid point on the cube-tile and the sphere-tile. 
Let the grid points on a cube-tile be indexed by [i, j], with local coordinate [X, Y]. In a gnomonic projection, 
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Figure 1.  C8 (8 × 8 × 6) cubed-sphere grid with three layers of ghost 
cells. When aligned on the same great circle, a simple 1-D polynomial 
interpolation from the red dots can provide the green dots' values with 
optimum accuracy and speed.
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each row of grid points [i,:] shares the same Y value, and each column of grid points [:, j] shares the same X 
value. The projection of the rows and columns on each cube face forms great circles on the sphere. Further-
more, the coordinates on the sphere converge to a pair of local north-/south-poles, and “west-/east-poles” 
for each sphere tile (Rossmanith, 2006; Figure 1).

This study offers a novel approach to unite generic gnomonic grid descriptions. Although previous work 
demonstrated different ways to create various gnomonic grids, the gnomonic grids share distinct proper-
ties. Given the orthogonality and symmetry of the gnomonic projected grid points on each cube-tile, the 
locations of grid points in a single row or column can fully determine the entire gnomonic cubed sphere. 
Therefore, Figure 3 can determine three widely used gnomonic projections in the literature by three pairs 
of reference lines with grid points equally distributed. The red reference lines stand for the most traditional 
equidistance projection (Sadourny, 1972). The equiangular grid (Ronchi et al., 1996) can be obtained by 
projecting the green lines with grid points equally distributed back to the cube tile and populating them to 
the entire [X, Y] space. Lastly, although not formally documented, FV3 (Harris et al., 2016; Harris & Lin, 
2013; Putman & Lin, 2007) introduced a gnomonic projection with more uniformly distributed cells on the 
tile interfaces, and is now adopted in the Next Generation Global Prediction System (NGGPS) project (Zhou 
et al., 2019). The FV3 grid is denoted by the “equi-edge” grid and can be obtained similarly by populating 
the grid-points-equally distanced blue lines on the sphere. The following procedures describe the process to 
populate the reference line grid points to the full gnomonic projections:

1.	 �Project the equally distributed grid points from the reference lines onto the gray-color cube-tile (this 
procedure is redundant for the red line).

2.	 �Mesh the gray cube-tile with the projected 1D distribution of the grid points from the cube surface.
3.	 �Project the fully meshed grid points from the gray cube tile to the green sphere tile.
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Figure 2.  The logic arrangement of the six cubed-sphere tiles. (a) the “tropic belt” arrangement has four tropic 
tiles and two polar tiles, the local coordinate directions are as illustrated at the lower-left corners. (b) the “staircase” 
arrangement and the local coordinates illustration. The “staircase” arrangement simplifies the determination of the 
neighbor tile indices and orientations into (c) odd-index-tile (blue) and (d) even-index-tile (yellow) cases. Note if the 
number n + l > 6, the corresponding tile number is n + l − 6.

(a) (b)

(c) (d)
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The equidistance grid produces less uniformly distributed volumes on 
the sphere. Therefore, most modern cubed-sphere models do not imple-
ment the equidistance grid. Although the equiangular projection yield 
slightly more uniform grid point distribution on the sphere, the equi-edge 
grid distributes grid points evenly near the sphere tile connections, which 
are the primary sources that cause grid imprinting with a cubed sphere. 
Additionally, in a stretched grid (Harris et al., 2016), the equi-edge grid 
produces the focused tile with more evenly distributed cells. This work 
only discusses the equi-edge and the equiangular grids, namely grid_type 
0 and 2, following FV3 naming convention.

2.3.  The Duo-Grid System to Handle Tile-Edge Connections

This work implements a maximum 5-point-stencil polynomial recon-
struction for the finite volume scheme. Therefore each tile requires 
three more layers of ghost cells by the wave propagation method (Chen 
et  al.,  2013, 2018; Li & Chen,  2019). Unfortunately, a main numerical 
challenge with the gnomonic cubed-sphere grid is that the grid coordi-
nates are not continuous across tile interfaces. Figure  1 illustrates the 
ghost cells on the local west-side of the green tile, which creates a west 
halo region. The native neighbor cell centers in the halo region are the 
red dots, which forms “kinks” in coordinates between the green tile and 
its west halo. Therefore, the name “kinked grid” denotes this halo type 
constructed by directly copying values from the neighboring tiles. A nat-
ural extension of the green tile coordinates (green dashed lines) into the 
halo region results in green dots, denoted by the “extended grid.”

There are two reasonable choices for the ghost cell numerical algorithms. 
FV3 powered models, for example, directly employ the red dots in the 
kinked-grid to form one-sided flux calculations to the tile boundaries. 
This method has several advantages. The operations in the halo region 
(e.g., west halo of the green tile) can be identical to the native calcula-

tions on the neighboring tile (red tile) from different calculating processors (Harris & Lin, 2013; Putman 
& Lin, 2007). Additionally, calculations associated with halo create almost no computational overhead, a 
valuable property to massively parallel computing. This study implements the other approach, which is to 
remap the red dots from the kinked-grid to the green dots on the extended grid (Katta et al., 2015; Ross-
manith, 2006; Ullrich et al., 2010; Yang et al., 2010). Therefore, the halo operations are a natural extension 
from the interior calculations, and no extra adjustment is required for the ghost cells. The second approach 
can effectively reduce the cubed-sphere grid imprinting at the tile edges, but creates undesired overhead in 
the parallel calculations. The extra calculations are mainly: (1) Tile-interface flux synchronization between 
different tiles; (2) Remapping of the prognostic variable values from the kinked grid to the extended grid.

The first synchronization overhead is due to inconsistent coordinate directions between tiles. The fluxes at 
the same interfaces by different tiles need to be sent to the adjacent tile and get averaged for conservation 
properties. This operation is only performed at the end of a full cycle of integration to minimize the message 
passing.

The interpolating algorithm must be at minimum complexity to alleviate the duo-grid remapping overhead. 
Most equiangular projection applications take advantage of that the green dots and red dots are aligned on 
the same great circle. Thus, 1-D interpolation is sufficient for the remapping procedure. This property is de-
noted by duo-grid 1D alignment. Unfortunately, this 1D alignment only applies to equiangular projection. A 
direct halo generation with equidistance or equi-edge projections (i.e., by extending three more layers into 
the halo during the interior grid creation) does not produce the duo-grid 1D alignment. A few extra steps 
by the following procedures can solve this problem and warrant the duo-grid 1D alignment for arbitrary 
gnomonic projections:
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Figure 3.  The gnomonic projection. The blue shaded surface is a cube-
tile, and the green shaded surface is a sphere-tile. The solid black line 
from the sphere center to the sphere surface illustrates a gnomonic 
projection between a grid point on the cube-tile and a grid point on the 
sphere-tile. The dotted lines define the corners of the bounds to one of 
the six surfaces of the cubed-sphere grid. The red lines are the gnomonic 
projection reference lines of the equidistance projection, and the green 
and blue lines are of the equiangular and equi-edge projections. The 
extension of the green surface indicates the ghost cell region for a finite-
volume application.
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1.	 �Populate the nonhalo gnomonic projection grid points based on the reference lines (red for equidistance, 
blue for equi-edge, and green for equiangular).

2.	 �Identify the grid points on the resulting sphere tile center lines (i.e., the green lines in Figure 3).
3.	 �Mirror the outermost three points from the green lines to the ghost region.
4.	 �Populate ghost cell grid points in the halo region base on the mirrored points on the green lines.

To minimize the remapping overhead, in this study, the minimum 1D piecewise linear interpolation is used 
to remap values from the red to the green points. No discernible degradation is observed compared with 
high-order 1D polynomial remapping algorithms. Detailed mathematic procedures in the gnomonic cubed-
sphere generation are described in (B).

3.  The Numerical Discretization
3.1.  The Governing Equations Discretization

A standard mathematical derivation of the governing equations on the cubed-sphere is included in C. Be-
fore rearranging and discretizing the governing equations, denote η an arbitrary variable, the following 
finite-volume (FV) operators are defined:

� � � �x i j i j i j�� �� � �� �, . , . , ,0 5 0 5� (1)

� � � �y i j i j i j�� �� � �� �, , . , . ,0 5 0 5� (2)

where ηi±0.5,j are the values of η evaluated at cell interfaces in the x-direction, and ηi,j±0.5 are the values of η 
evaluated at cell interfaces in the y-direction. Unless specifically specified, the subscripts  ,i j  are omitted 
for cleaner mathematical expressions, and the variables without subscripts are evaluated at the cell centers 
at location  ,i j .

The continuity equation can be rearranged in the flux form:

    1 Δ Δ ,
Δ

x y
x y

h hu y hu x
t A

  


  


� (3)

Define the flux coefficient:

 0.5, 0.5,,Δ Δ Δ ,x x x
i j i jf u t u t y   � (4)

  , 0.5, 0.5 ,Δ Δ Δ .y y y
i ji jf u t u t x   � (5)

Therefore, the final discretization of the continuity equation is:

    1 1 ,
Δ

n n x y
x yh h f h f h

A
    � (6)

and a straightforward discretization to update the cell center velocity components is:

   1 ˆ 1 Π Φ Δ ,
Δ

n n
x su u gv f K t

x
         

 
� (7)

   1 1 Π Φ Δˆ ,
Δ

n n
y sv v gu f K t

y
   

       
 

� (8)

The relative vorticity ζ at cell centers can be numerically evaluated by:
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    1 Δ Δ ,
Δ

x y
x yu y u x

A
    � (9)

and the kinetic energy K can be numerically evaluated at cell interfaces by:

 1 .
2

K u u u u    � (10)

Note that K or u⊥, u∥ are all defined at the cell interfaces, and the labels in x and y directions are omitted.

All cell-center or cell-averaged variable values are straightforward to calculate. The next step is to determine 
the values at the cell interfaces using an efficient approximate Riemann solver and evaluate the terms in 
the δx and δy operators.

3.2.  Calculation of Cell-Interface Values by LMARS

The remaining variables to be determined at the cell interfaces are: u⊥, h, Π, Φs, and K (i.e., u⊥, u∥).

Following the naming conventions in Chen et al. (2018), ,
W
i j  and .

E
i j  denote the “west” and “east” volume 

boundary values of arbitrary variable η calculated by polynomial reconstruction within volume  ,i j . There-
fore, the mismatching ,

E
i j  and 1,

W
i j   are evaluated at two sides of the interface between cell  ,i j  and  1,i j

. The first step of LMARS is to evaluate cell interface values of Π and u⊥. In the x-direction:

       , 1,0.5, , 1, 0.5,

1 1 Π Π ,
2 2

E Wx x x E W
i j i ji j i j i j i j

u u u
a   

  

     
 

� (11)

     0.5,
0.5, , 1, , 1,

1Π Π Π ,
2 2

E Wi jE W x x
i j i j i j i j i j

a
u u

   


     
 

� (12)

where a is the gravity wave speed (group velocity) estimated at cell interface:

 0.5, , 1,
1 Π Π .
2

E W
i j i j i ja   � (13)

Once the velocity normal to the cell interface determined, the values of the variables to be transported are 
chosen using upwind values:

h
h u

h
i j

i j
E x

i j

i j
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�
�

�
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�
�
�
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if
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� (14)

u
u u

u

x
i j

x
i j

E x
i j

x
i j

W





� �
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� �
�

�

�
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�

�

�
�

�

0 5

0 5

1

0

. ,

, . ,

,

if

else��
�

,� (15)

and the operations on the y-direction is symmetric and analogous.

Although algebraically h and Π are interchangeable with the relation Π = Gh, they play different roles in 
the governing equation. Π stands for pressure forcing term, and h is associated with material transportation. 
Therefore, their treatments are different in the LMARS solver. In a fully compressible model, their corre-
sponding terms are the density and pressure (Chen et al., 2013; Li & Chen, 2019).
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The last piece for a single sub-cycle update is to reconstruct the prog-
nostic variables' values at four horizontal cell edges. Following Chen 
et al. (2018) conventions, assuming an Nc-point stencil polynomial recon-
struction for an arbitrary variable η:

 
1

, ,
1

,
l Ng

lW
i j i l j

Ng
W 

 




 � (16)

 
1

, ,
1

,
l Ng

lE
i j i l j

Ng
E 

 




 � (17)

 
1

, ,
1

,
l Ng

lS
i j i j l

Ng
W 

 




 � (18)

 
1

, ,
1

,
l Ng

lN
i j i j l

Ng
E 

 




 � (19)

where    l lW E  , Nc = 2Ng − 1, and Ng is the layers of ghost cells required at the tile edges. The lookup 
coefficient tables for point-value reconstruction and finite-volume reconstruction from Chen et al. (2018) 
is repeated in Tables 1 and 2 for reference. Although this work does not implement any monotonic filters, 
most filtering schemes can be considered equivalent to altering the reconstruction coefficient values locally 
according to the shape of the solutions.

3.3.  Extension of the Pressure Gradient Algorithm in L97 with LMARS Viscous Terms and the 
Forward-Backward Algorithm

Up to this part, the numerical discretization closely follows the original LMARS approach described by 
Chen et al. (2013; 2018), which is sufficient for this shallow water solver. Alternatively, Lin (1997) (L97) in-
troduces an innovative spatial discretization to the pressure gradient term. Although mathematically equiv-
alent to this work, the L97 pressure gradient algorithm considerably simplifies the discretization in a full 3D 
compressible model and makes the numerical expression backward compatible with a shallow-water solver. 
One drawback of L97 is that the expression is a geometric realization of the volume interface pressure force 
integration. Therefore, it lacks the implicit diffusion calculated by a Riemann solver, and extra filters are re-
quired to stabilize the model. Fortunately, LMARS simple expression allows the separation of the geometric 
derivative terms and viscous terms. It is straightforward to extend the L97 pressure gradient algorithm with 
the LMARS viscous contribution and result in a fast and stable pressure gradient scheme.

As discussed previously, the volume interface pressure force obtained by LMARS described in Equation 12 
can be represented by an averaging term and a viscous term:

vis
0.5, 0.5, 0.5,Π Π Π ,i j i j i j   � (20)

where

 0.5, , 1,
1Π Π Π ,
2

E W
i j i j i j  � (21)

   0.5,vis
0.5, , 1,

Π .
2

E Wi j x x
i j i j i j

a
u u

  


   
 

� (22)

Therefore, the pressure gradient with the topographic contribution, for 
example, in the x-direction is discretized:

    vis1 1Π Φ Π Φ Π .
Δ Δs x s xx x x

 
   


� (23)
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Ng
( 2)
ptE  ( 1)

ptE  (0)
ptE (1)

ptE (2)
ptE

1 - - 1 - -

2 - −1/8 3/4 3/8 -

3 3/128 −5/32 45/64 15/32 −5/128

Table 1 
The Coefficient to Calculate “East” Side Midpoint Value on a Stencil 
Number of Nc = 2Ng − 1 From Point-Value Variables

Ng
( 2)
vmE  ( 1)

vmE  (0)
vmE (1)

vmE (2)
vmE

1 - - 1 - -

2 - −1/6 5/6 1/3 -

3 1/30 −13/60 47/60 9/20 −1/20

Table 2 
The Coefficient to Calculate “East” Side Midpoint Value on a Stencil 
Number of Nc = 2Ng − 1 From Volume-Mean Variables
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Note that X. Chen et al. (2018) explained that the viscous term Πvis in 1D is equivalent to a 2Ng-order diffu-
sion term, which automatically matches the stencil size of the reconstruction schemes. The same function 
evaluates the surface geopotential at cell interface to warrant numerical consistency:

     0.5, , 1,

1Φ Φ Φ .
2

E W
s s si j i j i j 

   
 

� (24)

The following equivalent expressions are defined to simplify the expression:

( , ) 0.5, , 0.5 ,x
i j k    � (25)

and the first term in pressure gradient can be rearranged in L97 format:

                     
       

, , , , , , , ,

, , , ,

Φ Φ Φ Φ
Π Φ .

x x x x x x x x

x s x x x x

p p p p

p p p p


               

       

    
  

  
� (26)

The expression in the y-direction is analogous. With this expression, the SWE and 3D compressible pressure 
gradient numerical discretization can share the identical code.

Another expansion of the pressure gradient calculation is to implement the forward-backward (FB) tech-
nique (Mesinger, 1977) to enhance the stability of the model. Chen et al. (2018) conducted several numer-
ical analysis on the FB technique. One of the key findings in the 1D linearized environment is that the FB 
operation is equivalent to a second-order diffusion term on the velocity components, which is vital for the 
stability of a single-step scheme. In this model with multi-step schemes, the FB scheme is not a necessary 
component but can be useful in the future fully coupled 3D model as a diffusion moderator. Considering 
the FB is almost computationally equivalent to an explicit scheme, a relaxed-FB scheme is implemented 
by setting a parameter 0,1     to the geometric pressure gradient term following Harris and Lin (2013):

       1
Π Φ 1 Π Φ Π Φ .

n n
x s x s x s   


     � (27)

Therefore, the parameter β in the FB scheme is an implicit control coefficient of a 2nd-order diffusion term. 
The response to various beta values will be validated in the test section.

3.4.  Temporal Discretization

The linearized two-step and three-step Runge-Kutta schemes (rk2 and rk3) are implemented for time in-
tegration. In each substep, denote prognostic variable array U and right-hand-side term RHS(U, Ng, β), 
where the dynamical parameters Ng controls the stencil size of the reconstruction scheme and β controls 
the strength of the FB algorithm in the pressure gradient evaluation. Therefore, the numerical properties of 
each subcycle update can be tailored to various purposes. Unless explicitly declared, the dynamical param-
eters in rk2 scheme is:

 * 1 Δ RHS , 1, 0 ,
2

n n
gU U t U N    � (28)

 1 *Δ RHS , 3, 0 .n n
gU U t U N     � (29)

The default rk2 configuration represents a dynamical core with the least operation counts in each time step 
and most implicit diffusion.

The default rk3 scheme is:

   1 1 Δ RHS , 3, 1 ,
3

n n
gU U t U N    � (30)
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    2 11 Δ RHS , 3, 1 ,
2

n
gU U t U N    � (31)

  21 Δ RHS , 3, 1 .n n
gU U t U N     � (32)

The default rk3 configuration represents dynamical core with minimized implicit diffusion.

Although the rk2 scheme cost fewer operations in each full cycle, the rk3 scheme allows larger time steps. 
In practice, a fully optimized rk2 should still maintain better computational efficiency over rk3, majorly 
due to the first-order substep is significantly cheaper than the standard high-order substep. The linearized 
Runge-Kutta schemes can highly optimize the computational memory storage cost since the values of RHS 
terms in each substep are not retained, and the storage of updated prognostic variables can be reused. Lastly, 
linearized rk3 only improves the CFL conditions and is 2nd-order accurate in time. Standard high-order 
accurate Runge-Kutta schemes can be found in X. Chen et al.  (2013); Ullrich et al.  (2010); C. Chen and 
Xiao (2008).

4.  Tests and Results
4.1.  Testing Plan

Table 3 introduces the naming convention to label the model configurations for a shallow water test sim-
ulation. For example, a run label C48. g2. rk3. b1.00 stands for a simulation of a 48 × 48 × 6 cubed-sphere 
grid with equiangular grid point distribution, and the discretization configuration is the rk3 scheme de-
scribed in the previous subsection. The value of the forward-backward parameter is 1, which is fully explicit. 
As described above, the default rk2 configuration not only uses fully implicit forward-backward pressure 
gradient evaluation but also minimizes the first substep complexity by using a 1st-order accurate recon-
struction scheme. The rk3 configuration implements a fully explicit pressure gradient algorithm and uses 
5-point-stencil reconstruction for all three substeps. Therefore, the rk2 and rk3 configurations represent 
the two extremes of the numerical diffusion and performance properties spectrums, with rk2 at the more 
computationally efficient, more diffusive end, and vice versa. The diffusivities of other configurations lie 
between the two ends.

Most conventional tests require the simulation data on a traditional latitude-longitude grid for analysis. 
Therefore, all cubed-sphere simulation results are remapped by a 1st-order conservative algorithm onto a 
144 × 72 spherical grid, which is about 2.5-degree grid spacing to minimize regridding introduced artifacts.

The validation of this model contains three stages. The first stage employs the widely adopted Williamson 
et al. (1992) shallow-water test suite (W92) to match the convergence of the results to the literature. The 
smooth solutions in W92 also allow the validations of the order of accuracy and model's overall response to 
diffusion. The sensitivities of the model-specific parameters, such as grid choices, discretization configura-
tions, beta values, are tested. In GCM development, the rotational mode plays a dominant role in large to 
mesoscale motions. Therefore in stage 2, the recently proposed modon test (Lin et al., 2017) is implemented 
to check the model's quality in representing the vorticity. Last but not least, a new “splash test” inspired by 
Chen et al. (2018) is proposed in stage 3 to validate the model's dispersion and dissipation properties. Mini-
mizing the phase speed errors at short wavelengths and maintaining scale-selective diffusion properties are 
vital for unstaggered algorithms.

The time step in each run configuration is set at the maximum allowed values that the simulations are sta-
ble in all resolutions. The courant number for LMARS based solver is estimated by:

 
 
max min

CFL
min

Δ
,

Δ / Δ
a a t

c
A x


� (33)

where amax and amin stand for the highest and lowest gravity wave speed evaluated at the initial condi-
tion, and  minΔ / ΔA x  is the shortest distance across a grid cell. Granting that the maximum flow speed 
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in LMARS should be less than the lowest gravity wave speed, the estimated courant number is an upper 
bound in the simulations. This definition can be extended to the compressible 3D model by replacing the 
gravity wave speed with acoustic wave speed. In all simulations, the dynamic time step Δt is calculated 
via:  Δ dt_atmos / k_split n_splitt   , where dt_atmos = 3,600 s is a base time step, the cycling parameter 
n_split is unchanged in all resolutions, and k_split scales with resolutions with values [1, 2, 4, 8, 16] corre-
sponding to [C48, C96, C192, C384, C768]. Among all parameters, the choice of the time-marching scheme 
is the most dominant factor in determining the maximum allowed time steps. The equiangular grid allows 
slightly larger time steps than the equi-edge grid. Table 4 lists the time step parameter n_spit and the corre-
sponding courant numbers for all test cases.

Error norm measures follow the W92 in the height field h:

   
 1 ,T

T

I h h
l h

I h


� (34)

 
  
 

2

2 2
,

T

T

I h h
l h

I h


� (35)

  max
,

max
T

T

h h
l h

h


� (36)

with global mean operator:

  Δ ,
Δ
AI
A

 



� (37)

where ΔA is the discretized area of the cell that variable η occupies, hT is the true solution of fluid depth, 
which is estimated by the most accurate C768. g2. rk3. b1.00 results if no analytical solution is available.

4.2.  W92 Shallow-Water Tests

In W92, test cases 1, 2, 5, 6 (see test names in Table 4) are widely used in global shallow-water solver de-
velopment. These four tests are conducted with various configurations and resolutions, as described in the 
testing plan. In particular, case 1 and 2 usually tests different rotating angles. Since the solutions do not 
show significant dependency on the rotation directions, only 45-degree rotation results are presented for 
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Notation Description

C N   Cubed-sphere grid with N cells along each side of the cubed sphere tile. N × N × 6 total grid cells. 48,96,192,384,768N    .

g0 Equi-edge grid

g2 Equiangular grid

rk2 2-substep time scheme with 1-point- and 5-point-stencil polynomial reconstruction in two substeps.

rk3 3-substep time scheme with 5-point-stencil polynomial reconstruction in all substeps.

b    The forward-backward pressure gradient algorithm control parameter β ∈ [0, 1]. (only appear when β value is nondefault)

Note. For example, a run label C48.g2.rk3.b1.00 stands for a simulation with a 48 × 48 × 6 cubed-sphere grid with equal-angular tile grid point distribution, and 
the time advancing is a 3-step Runge-Kutta scheme, the value of the forward-backward parameter is 1, which is fully explicit.

Table 3 
Naming Convention to Label the Model Configurations of a Shallow Water Test Simulation
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brevity. The 45-degree advection of the cosine bell and the solid body rotation tests are labels as case1a45 
and case2a45.

Figure 4 is the l1, l2, and linf error norms plotted against the simulation time at C48 resolution. A general 
finding is that the errors of most nonstationary runs depend mostly on rk2 and rk3 differences rather than 
the grid type choices, indicating diffusion properties are the dominant factor in error growth. Case 1 uses 
constant flows, which do not evaluate the pressure gradient. Therefore, the results represent the errors sole-
ly due to advection schemes. Additionally, no sudden error spike is observed when the cosine bell travels 
across cube-sphere tile boundaries in case 1. Thus, the singularities in a cubed-sphere geometry are suffi-
ciently handled, and no grid imprinting is observed. In the solid-body rotation tests with stationary solu-
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Test label Test description n_split (rk2) cfl (g0.rk2) n_split (rk3) cfl (g0.rk3)

Case 1 Advection of a cosine bell 8 - 8 -

Case 2 Steady-state geostrophic balanced flow 10 0.7 7 1

Case 5 Zonal flow over an isolated conical mountain 13 0.85 9 1.22

Case 6 Rossby-Haurwitz wave 19 0.81 13 1.18

Modon Colliding modons 11 1.02 7 1.61

Splash Splash on the sphere 2 - 2 -

Note. The courant numbers are associated with equi-edge grid configuration.

Table 4 
Time Step Parameter n_split and the Corresponding Courant Number in Each Test Case

Figure 4.  l1, l2, and linf error norms growth with the simulation time of W92 test cases 1, 2, 5, and 6 at the C48 resolution.
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tions, which are different from other tests, all the runs produce similar magnitudes of errors. In particular, 
the equi-edge grid (g0) produces slightly larger errors than the equiangular grid (g2). Lastly, in case 6, the 
error growth curves do not saturate to a steady number, indicating that the solutions remain in-phase (X. 
Chen et al., 2018) even after a significant period of simulation time.

The distributions of the errors of case 2 offer a measure to the cubed-sphere grid imprinting. Figure 5 plots 
the bias of the solid-body rotation tests with a 45-degree configuration. The bias is the difference between 
the solutions at the final time and the initial time. All simulations are regridded to a 144 × 72 resolution. 
The results are consistent with Figure 5, C48. case2a45 subplots, especially the linf plot, where the equi-
edge results in slightly larger errors than the equiangular grid. All solutions employ a simple 1D remap at 
tile-halo connections and therefore improve markedly than the more direct nonremapped approaches (e.g., 
Harris & Lin, 2013). Although small cube-edges can still be observed at coarser resolutions (C48, C96), high 
resolution runs almost eliminate all direct grid-imprinting errors. Lastly, it is worth repeating that although 
case 2 is a good measure for cubed-sphere grid imprinting, it DOES NOT provide sufficient test coverage of 
error analysis for generic nonlinear shallow water flows, as discussed in Figure 4.

To determine the general order of accuracy in different configurations, Figure 6 plots the l2 error against 
different resolutions at specific dates. The results indicate that rk3 runs consistently maintain second-order 
overall accuracy, which is expected since no high-order multi-dimension scheme is employed in this study. 
The previous section explains that the forward-backward scheme (FB) is numerically equivalent to adding 
a 2nd-order stabilizing term to the advection equation, which will degrade the overall 2nd-order accuracy. 
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Figure 5.  l1, l2, and linf error norms growth with the simulation time of W92 test cases 1, 2, 5, and 6 at the C48 resolution.
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Therefore, in cases 5 and 6, rk2 runs, which employ a fully forward-backward pressure gradient algorithm, 
demonstrate lower than 2nd-order overall accuracy. Case 1 does not involve the pressure gradient. Thus, it 

is not affected by FB settings. It appears that the balanced stationary case 
2 is also free of FB accuracy degradation.

A more in-depth analysis of FB impact is demonstrated in Figures 7 and 
8. Interestingly, the overall order of accuracy gradually increases with 
higher beta values in Figure 7. In Figure 8, although all results have good 
convergence toward C768 high-resolution solutions, FB parameter β has 
a significant influence on the solver's diffusion properties. The fully ex-
plicit C48. rk3. b1.00 run produces even higher maximum values (the 
small circle at the eastern equator) than the C768. rk3. b0.00 run with 
fully implicit pressure gradient evaluation.

The Rossby-Haurwitz test (case6) with a wavenumber four is adopted in 
various works. This test can validate the solvers' robustness in prevent-
ing the instability due to truncation error in the initial conditions. Fig-
ure 9 shows the height field at day 14, 40, 80 at resolutions C48 and C768 
with rk2 and rk3 configurations. Only the equal-angular grid is displayed 
because no strong dependency from the grid type choices is found. The 
solver achieves optimum symmetry for an extended simulation time of 
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Figure 6.  l2 error against different resolutions at specific dates with different resolutions. The value of s in the legends are slopes of each line that indicates the 
overall order of accuracy.

Figure 7.  Same as Figure 6, but different beta values in case 5 are 
compared.
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over 80 days. Although both being symmetric, the high-resolution C768 reference solutions maintain much 
better initial modal structures and intensity than the low-resolution solutions.

4.3.  Colliding Modons

The recently proposed colliding modons test (Lin et al., 2017; Wang et al., 2019; Zhang et al., 2019) evalu-
ates the solver's ability to simulate vorticity dynamics, which plays a dominant role in large to mesoscale 
motions. The colliding modon pairs can fully reach steady shapes after one day and travel back to approxi-
mately their original locations at around day 100. A successful cycle can produce four symmetrical tracks in 
four quadrants, namely Qsw, Qse, Qnw, Qne. The quality of the results can be evaluated by comparing the travel 
distances and amplitudes of the vortex.

Figure 10 demonstrates the colliding modons simulations with g2. rk3 configuration at various resolutions. 
The results show that the symmetry is well maintained in all runs. The simulations with C192 and better 
resolutions show good convergence. Figure 11 compares the travel distance and amplitude of the modons 
in the northwest quadrant at day 100. Note that the travel distance is measured starting at the end of day 1 
to ignore initial adjustments. Although the grid choices, discretization configurations have impacts on both 
values, the resolution is the deterministic factor to resolve the modons movement correctly, and C192 and 
better resolutions result in converged values. Compared to the original work that introduced the modon 
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Figure 8.  The final day flow height field of case 5 with C48 and C768 resolutions. Different configurations of rk2, rk3 and different strength of FB parameter β 
values are also compared. The dashed circle is the location of the conical mountain. The contour interval is 50 m.
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tests, the converged final locations of the modons are consistent with both FV3 C192/C384 results and the 
GFDL-Spectral model T213/T511 results (see Figure 4 in Lin et al., 2017). The bar plots in Figure 11 provide 
a quantitative baseline for future development.

The colliding modons test provides an interesting perspective in atmospheric modeling applications. The 
spatial scale of each modon is at around 1,000 km. The experiments show that although a 200 km resolution 
(C48) model can capture the motion of the modon, the speed is not correctly simulated, and the strength of 
the vortex is rapidly dissipated by model internal diffusion. Considering that many rotational processes that 
are of interest in global circulation models are of horizontal scales less than 1,000 km, increasing the model 
resolution may be the most effective way to improve the accuracy in simulating many rotational events such 
as cyclones and storms. Recent studies also suggest significant improvements in simulating atmospheric 
vortices by enhancing the model resolution. For example, Murakami et al. (2015) found that by improving 
resolution from 50 to 25 km, the model can better capture categories 4 and 5 hurricanes. Gao et al. (2019) 
showed better hurricane structures by locally increasing the model resolution from 25 km to 8 km.

4.4.  Splash on the Sphere

Previous subsections cover a comprehensive range of numerical model properties such as the correctness, 
orders of accuracy, faithful vortex representation. This section validates the dispersion and dissipation prop-
erties at various wavelengths by introducing a “splash on the sphere” test. Historically, unstaggered solv-
ers are considered inferior in representing the short wave propagation due to poor dispersive properties. 
However, such conclusions usually are based on the low-order linearized analysis, which does not reflect 
high-order complex real-world applications. By discretizing the high-order linearized analysis in Courant 
numbers and numerical phase, Chen et al. (2018) found the grid staggering choices have negligible phase 
speed influence in high-order algorithms. Furthermore, Chen et al. (2018) also introduced a simple 1D test 
to visualize the dispersion behavior at short waves and the diffusion control of grid-scale noise. Inspired by 
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Figure 9.  Height field at day 14, 40, 80 at resolutions C48 and C768 with rk2 and rk3 configurations. Only the equal-angular grid (g2) is displayed because no 
strong dependency from the grid type choices is found. The contour interval is 200 m. The dashed lines are the gridded latitudes and longitudes with intervals of 
45 degrees.
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this work, this section presents an extended 2D version of a “splash on the sphere” test to evaluate solver 
capabilities in faithfully represent short wave propagations.

The test has a simple physical process to splash a sinusoidal droplet at the North Pole and freely propagate 
on the nonrotational sphere. The choice of the sinusoidal signal is to limit the waves in a single modal mode 
and test the sharp gradient between the perturbation and the background when a monotonic algorithm is 
implemented in the future. The Coriolis coefficient f and the topography are both zero, and the initial veloc-
ity field is stationary. The height field with the initial splashing perturbation is defined:

�
� �

�
�

� � �
�
�

�
�
� �

�

�
�

�
�
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0

2
cos ,

,

� r
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Figure 10.  Colliding modons simulations with g2. rk3 configuration at various resolutions.
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where r is the distance from the north pole, and  20Φ 50 m / 10DayeG R   , Φ' = 1 m ×  G, and 
R = 500 km. The design of a 50 m background flow height allows the propagating waves to reach the 
South Pole at approximately 10 days, which is an arbitrary choice. Figure 12 illustrates the exaggerated 
height field at Days 0, 2, 5, and 7.

The analysis of this work focuses on day-5 snapshots when the splash waves propagate to the equatorial 
region. The results in all resolutions are regridded to 144 × 72 latitude-longitude resolution. Figure 13 shows 
the day-5 snapshots in the meridional direction of g2. rk3 runs at various resolutions. All simulations prop-
agate the splash at the same location, indicating no phase error is observed. The C48 run shows an obvious 
spreading of the wave due to the excessive diffusion at this wavelength. Since this work does not implement 
any monotonic algorithm, overshoots and undershoots are also observed in the results.

Figure 14 quantitatively compares day-5 snapshots of distances to the north 
pole (NP), peak flow height, and maximum zonal wind absolute values with 
different discretization settings, gird choices, and resolutions. The identical 
distances to NP indicate the solver’s excellent dispersive properties, which 
is highly desired with the unstaggered algorithm. In contrast to the modon 
tests, the peak flow height comparison shows an intriguing observation that 
the model's intrinsic diffusion properties have an even more significant in-
fluence on the results than the resolution differences. In the last column, 
a perfect numerical solver should not produce any zonal wind in this test. 
The nonzero values are due to the imperfect representation of the curvilin-
ear cubed-sphere geometry. Therefore, it is an excellent test to check the 
grid discretization performance. It is reassuring to find that the different 
grid choices do not produce excessive discrepancies in geometric errors. 
The resolutions and discretization play more critical roles than grid choices.
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Figure 11.  The travel distance and amplitude of the modons in the northwest quadrant at day 100. Note that the travel distance is measured starting at the end 
of day 1 to ignore initial adjustments.

Figure 12.  Exaggerated height field of the splash on the sphere test at 
Days 0, 2, 5, and 7.
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This work only tests one splash configuration for brevity. In Chen 
et  al.  (2018), a square wave is also an informative setup to investigate 
sharp gradient handlings. In future work, a “square splash” can be an ap-
pealing option once more sophisticated local monotonic algorithms are 
included. The tracking of maximum zonal wind absolute values can be a 
useful gauge of high-order multi-dimension algorithms.

4.5.  Discussion

The model demonstrates competitive performance in all numerical tests. 
Even without any explicit filter, the solver exhibits a broad range of or-
ganic implicit diffusion properties, mainly controlled by reconstruction 
stencil size and strength of forward-backward pressure gradient settings. 
Considering a full-fledged GCM is an interplay between numerical meth-
ods and highly uncertain physics parameterization, flexibility in diffusion 
control is helpful.

The results provide some perspectives in faithfully simulating various processes. The rotational motions in 
the colliding modon tests and the propagation of characteristics in the splash tests are both about a 1,000-
km spatial scale. Although the C48 simulations can capture both events, the qualities are significantly less 
reliable than those of higher resolution counterparts. C96 is the recommended minimum resolution to 
accurately represent these processes, which is about 10 times grid-spacing. This guideline also indicates the 
unstaggered solver has balanced capabilities in resolving the rotational mode, and the divergence mode.

With the duo-grid system and the tile-edge remapping, the solver is free of any grid imprinting issues. The 
grid-type choices show negligible differences in the solutions compared to discretization differences and 
resolutions, which indicates the desired consistency in grid choices for various purposes.

Lastly, most numerical decisions are balanced assessments with both accuracy and performance in consid-
eration. For example, the theoretically best accuracy provided by the fully nonlinear 4-step Runge-Kutta 
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Figure 13.  Day-5 snapshots in the meridional direction of g2. rk3 runs at 
various resolutions.

Figure 14.  Day-5 snapshots of distances to the north pole (NP), peak flow height, and maximum zonal wind absolute values with different discretization 
settings, different gird choices, and resolutions.
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schemes, or multi-dimension cubed-sphere halo remapping schemes cannot justify the considerable over-
head in both computing memory requirements and computational costs or the workload imbalance to the 
modern paralleled computing platforms. On the other hand, a single-step time-marching scheme provides 
the best speed but cannot avoid undesired low-accuracy due to excessive diffusion for the stability require-
ment, such as the fully forward-backward pressure gradient scheme (see discussions in Chen et al., 2018). 
The more deterministic numerical decisions can form upon creating the full 3D model, and in-depth soft-
ware-level optimization, such as Müller et al. (2019), is crucial for the final production applications.

5.  Conclusions and Future Work
In this study, we have successfully demonstrated the LMARS-based shallow-water solver on two gnomonic 
cubed-sphere grids with controllable variations of computational efficiency and diffusion properties. We 
use the W92 test suite to warrant the model to produce results that converge to the literature. The model 
illustrates a broad range of diffusion and controls the delicate balance between the order of accuracy and 
the robustness by various dynamical core parameters. In particular cases, numerical tests demonstrate that 
many resolvable processes are not necessarily reliable. We also designed a test to isolate numerical proper-
ties by visualizing the dissipation and dispersion. Lastly, Griffies (2004, Chapter 17) discussed that explicit 
frictional operators might alter pressure gradient and angular momentum due to imbalanced design. With 
no explicit damping, the control of implicit diffusion in this model is organic and does not cause artifacts in 
pressure gradient calculations.

There are several new ideas in this study. We introduced the duo-grid system that unifies arbitrary gnomon-
ic cubed-sphere grid representations. It also provides the 1D alignment for arbitrary gnomonic grids at halo 
regions. This work also extends the L97 pressure-gradient integration technique with LMARS diffusion con-
tribution, resulting in a fast and stable discretization. In the numerical test section, the extension of more 
quantitative metrics to the modon tests allows straightforward comparison between different models and 
configurations. The splash on the sphere test offers an economical way to get 1D dispersion and dissipation 
properties of the model without extracting the schemes into a 1D testbed.

Balancing the computational performance and numerical accuracy is one of the top motivations in this 
development. Therefore, this work implements several optimizations. Some improvement does not sacri-
fice numerical accuracy. For example, the choice of unit-length basis vectors significantly simplifies the 
mathematical expressions of the curvilinear system, thus avoiding the computational storage of redun-
dant vector transformation matrices. On the other hand, although halo region 1D remap can be made 
more sophisticated with higher-order schemes, we choose the simple piecewise linear reconstruction to 
maintain a minimum unbalanced workload in parallel computing. Lastly, a shallow-water testbed cannot 
determine the most optimal solver diffusion properties in a fully coupled GCM. Therefore, this work 
provides a guideline for a controllable range of organic numerical properties once integrated into a full 
model.

The next step is the extension of this work to a 3D compressible atmosphere with the cubed-sphere grid. 
Previous work has implemented LMARS in a vertical 2D compressible atmosphere with both Eulerian and 
Lagrangian vertical coordinates (Chen et al., 2013). Li and Chen (2019) demonstrated an energy-conserving 
model with simple microphysics under the LMARS Eulerian framework. Therefore, the LMARS 3D exten-
sion on the cubed-sphere grid has several core components validated in various environments. Another 
future topic is to include more sophisticated advection components, such as monotonic constraints (van 
Leer, 1979), high-order multi-dimension transport schemes (Lin & Rood, 1996) in the horizontal direction. 
With the vertical Lagrangian coordinates, this development shares substantial similarities with the FV3 
framework, which can guide future research.

Appendix A:  List of Constants, Symbols and Their Values and Units
To make the notations consistent and clear, Table A1 summarizes all important constants, symbols, their 
values and units in this study for reference.
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Symbol Description Values Units

G Gravitational constant 9.80665 ms−2

Ω Rotational speed of the Earth 7.292e-5 s−1

R Radius of the Earth 6.3712e6 m

ê Unit vector in zonal direction 1 NA

ê Unit vector in meridional direction 1 NA

1̂e Unit vector in x-direction (local to cubed-sphere tile) 1 NA

2ê Unit vector in y-direction (local to cubed-sphere tile) 1 NA

k̂ Unit vector in sphere radius direction 1 NA

λ Longitude - rad

Φ Latitude - rad

i, j Indices to label grid points in x- and y-directions - NA

α angle between two curvilinear coordinates - rad

gij Covariant 2D metric tensor of the curvilinear grid system, note the ij in this context is 
the dimension iteration in Einstein Notation

- NA

gij Contra-variant 2D metric tensor of the curvilinear grid system - NA

h Thickness of the fluid - m

Π Thickness of the fluid in term of geopotential - m2s−2

Φ Geopotential - m2s−2

Φs Surface geopotential - m2s−2

u
 2D velocity vector - ms−1

f Coriolis parameter - s−1

ζ Vertical component of the relative vorticity - s−1

u Covariant wind component in x-direction - ms−1

v Covariant wind component in y-direction - ms−1

u Contra-variant wind component in x-direction - ms−1

v Contra-variant wind component in y-direction - ms−1

g Metric coefficient of the curvilinear geometry - NA

uλ Wind component in zonal direction - ms−1

uϕ Wind component in meridional direction - ms−1

Jc2l
Matrix to convert  ,u v  to  ,u u  - NA

Jl2c
Matrix to convert  ,u u   to  ,u v - NA

xu Wind projection perpendicular to cell interface in x-direction - ms−1

xu Wind projection parallel to cell interface in x-direction - ms−1

yu Wind projection perpendicular to cell interface in y-direction - ms−1

yu Wind projection parallel to cell interface in y-direction - ms−1

a Gravity wave speed (group speed of the fluid) - ms−1

Table A1 
List of Parameters and Symbols Used Throughout This Document
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Appendix B:  Gnomonic Projection Initialization Algorithms
This section provides a detailed mathematical reference-line based gnomonic cubed-sphere generation pro-
cess for reference.

B1 Basic geometric algorithms

Each gnomonic projection can be described by a 3D Cartesian vector  , ,p x y z , which is uniquely deter-
mined by a point on the sphere or a 3D vector on the spherical coordinate with unit length  ,p  

 . The 
valid information is the direction of the vector, and the length of the vector is trivial. The conversion can 
be written:

cos cos ,x  � (B1)

cos sin ,y  � (B2)

sin ,z � (B3)

and

arctan ,y
x

 � (B4)

2 2 2
arcsin ,z

x y z
 

 � (B5)

where the Fortran intrinsic functions atan2 () is used to place λ in the range of − π < λ ≤ π.

To calculate the great circle distance between two points:

     1 2
1 1 1 2 2 2

1 2
dist , , , arccos ,p pp p R

p p
   

 
   

 

  
 � (B6)

or

       1 1 1 2 2 2 1 2 1 2 1 2dist , , , arccos cos cos cos sin sin .p p R           
 

� (B7)

To calculate the area of a grid cell:

   2
1 2 3 4 412 123 234 341area , , , 2 ,p p p p R         
   

� (B8)

where αijk is the angle between three points  , ,i j kp p p
    with “right-hand rule” from jp

 , and can be calcu-
lated by:

   
arccos .i j j k

ijk
i j j k

p p p p

p p p p


   
 
    

   

   � (B9)

The mid-point of two vectors 1p


 and 2p


 is:

  1 2
1 2mid , .

2
p pp p 


  

� (B10)
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B2 Initializing gnomonic projection with reference lines on tile one

As illustrated in Figure 3, the eight corners of the tiles in 3D Cartesian coordinates are    , , 1, 1, 1x y z     . 
The resolution of the cubed-sphere grid is denoted by C N  , which indicates N × N × 6 total grid cells. Let 
the first tile be centered at    , 0,0    or the cube-tile with vertices    , , 1, 1, 1x y z     and denote (X, Y) 
the local coordinates on this cube-tile, the 3D Cartesian coordinates can be written by:

   , , 1, , ,x y z X Y� (B11)

and the projection vector can be also written  ,p X Y . Additionally, let  ,i j  be the indices of the grid points 
on tile one, and the indices start counting from 1. Therefore, the coordinate sets  , ,x y z ,  ,  ,  ,X Y  and 
 ,i j  are interchangeable and representing the same gnomonic projection vector. The vertices on the tile can 
be uniquely determined by a column of Y values on the cube tile surface.

B21 Equidistance projection

To get the Y values of the red reference column:

   ref , 1 1 ,Y i j j h   � (B12)

where δh = 2/N, iref = N/2 + 1. Then the red reference row is:

   ref ref, , ,X i j Y i i� (B13)

where iref = N/2 + 1, and the grid mesh on the cube tile can be populated from the two reference lines 
accordingly:

     ref, , , ,refX i j X i j Y i i � (B14)

   ref, , .Y i j Y i j� (B15)

Therefore,  ,p X Y  can be easily converted to  , ,p x y z  and  ,p  
 , and the grid points on the cubed-sphere 

tile is generated. One may observe that the values of iref and jref are trivial

B22 Equiangular projection

Comparing to equidistance projection, the equiangular grid generation requires an extra first step to project 
grid points from the green reference column to the cube tile and get the Y values. The angular step of the 
grid points on the green row is:

ref2 ,
N
 � (B16)

where αref = π/4. Then the Y values are:

    ref ref ref, tan 1 ,Y i j R j    � (B17)

where Rref = 1. Then the entire set of grid points on the tile can be populated following the same procedure 
as the equidistance projection.

B23 Equi-edge projection

The procedures to generate the equi-edge projection are identical to the equiangular projection except dif-
ferent parameters:  ref arcsin 3  , ref 2R  .
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B3 Populating grid points to six tiles

Once the grid points on tile one are generated, the points on the rest of the tiles can be populated using the 
“staircase” tile-interlock pattern. The basic rotations to any 3D vector can be decomposed by the combina-
tion of the rotations about each axes of the Cartesian coordinate system. The rotation about each axes by an 
angle β following right-hand rule:

 
1 0 0
0 cos sin ,
0 sin cos

xR   
 

 
   
 
 

� (B18)

 
cos 0 sin
0 1 0 ,

sin 0 cos
yR

 


 

 
   
  

� (B19)

 
cos sin 0
sin cos 0 .
0 0 1

zR
 

  
 

   
 
 

� (B20)

In particular,

 
1 0 0

90 0 0 1 ,
0 1 0

xR
 
    
 
 

� (B21)

 
0 0 1

90 0 1 0 ,
1 0 0

yR
 
    
  

� (B22)

 
0 1 0

90 1 0 0 .
0 0 1

zR
 

    
 
 

� (B23)

Therefore, the rotations for each tile:

     , ; tile 2 90 , ; tile 1 ,zp i j R p i j   
 

� (B24)

       , ; tile 3 90 90 , ; tile 1 ,x zp i j R R p i j    
 

� (B25)

       , ; tile 4 90 180 , ; tile 1 ,x zp i j R R p i j   
 

� (B26)

       , ; tile 5 90 270 , ; tile 1 ,y zp i j R R p i j   
 

� (B27)

     , ; tile 6 90 , ; tile 1 ,yp i j R p i j   
 

� (B28)
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or:

 , ; tile 1 1, , ,p i j X Y    


� (B29)

 , ; tile 2 ,1, ,p i j X Y    


� (B30)

 , ; tile 3 , ,1 ,p i j X Y     


� (B31)

 , ; tile 4 1, , ,p i j Y X      


� (B32)

 , ; tile 5 , 1, ,p i j Y X     


� (B33)

 , ; tile 6 , , 1 .p i j Y X    


� (B34)

Appendix C:  The Governing Equations
This shallow water model employs the vector-invariant form governing equations:

  ,h hu
t


  




� (C1)

    1Π Φ ,
2s

u f k u u u
t

             

    
� (C2)

where

Π ,Gh� (C3)

 ˆ ,k u    


� (C4)

2Ωsin .f � (C5)

The definition of the variables, constants, and their values are summarized in Table A1.

C1 Generic form in a curvilinear grid system

This solver uses covariant wind components as the prognostic variable. The covariant wind components are 
the projections of the wind vector on the curvilinear coordinates:

1̂,u u e 


� (C6)

2ˆ ,v u e 


� (C7)

and the corresponding contra-variant wind components satisfy:

1 2ˆ .ˆu ue ve 
  � (C8)

A covariant 2D metric tensor gij of the curvilinear grid system on a tile of the cubed-sphere is defined by 
Einstein Notation:

ˆ ,ˆij i jg e e � (C9)
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with the metric coefficient:

det( ).ijg g� (C10)

Note îe  and ˆ je  in the Einstein Notation are iterations along dimensions 1̂e  and 2ê . The contra-variant 2D 
metric tensor gij is the inverse of gij, and the conversions between co-variant and contra-variant vector com-
ponent are:

,ij
u u

g
v v
   

   
   


� (C11)

.iju u
g

v v
   

   
   


� (C12)

C2 The choice of the basis vectors and the optimizations

The choice of the definition of 1̂e  and 2ê  are flexible. Modelers made various definitions of these terms in the 
literature. To yield concise mathematical expressions in numerical discretization, the covariant unit vectors 
are set to unit length in space, or 1 2ˆ ˆ 1e e  . Thus, the values at the each grid point  ,i j  on a cubed-sphere 
tile can be calculated in a discretized form:

 
 
 

, 1, ,
1 ,

, 1, ,

ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ
,

i j i j i j

i j
i j i j i j

k k k
e

k k k





 


 
� (C13)

 
 
 

, , 1 ,
2 ,

, , 1 ,

ˆ ˆ ˆ
ˆ

ˆ ˆ
,

ˆ
i j i j i j

i j
i j i j i j

k k k
e

k k k





 


 
� (C14)

with:

 
cos cos

, cos sin .
sin

k̂
 

   


 
   
  

� (C15)

This algorithm to determine 1̂e  and 2ê  offers better flexibility when constructing various implementations of 
the cubed-sphere grids.

Define α the angle between two local curvilinear coordinates, or the unit vectors 1̂e  and 2ê  on a cubed-sphere 
tile, it yields:

 1 2
ˆ ˆsin ,ˆk e e   � (C16)

1 2ˆos .ˆc e e  � (C17)

Note that discrete grid subscripts i, j are omitted for cleaner expression, since all variables are co-located.

This set of basis produces concise mathematical forms of the metric tensors:

1 cos
,

cos 1ijg



 

  
 

� (C18)
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2
1 cos1 ,

cos 1sin
ijg




 
   

� (C19)

sin .g � (C20)

C3 Conversions of vector components to the regular latitude-longitude 924 coordinates

The latitude-longitude basis vectors are:

 
sin

1, cos ,
cos

ˆ
ˆ

0

ke


  

 

 
        

� (C21)

 
sin cos

, sin sin ,
cos

ˆ
ˆ ke

 
   




 
        

� (C22)

and define the regular zonal and meridional wind components uλ and uθ. The conversion matrices are:

1 22

1 2

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ,c l ije e e e

J g
e e e e

 

 

  
    

� (C23)

 
2 2

11 122
2 2 2

21 22

,
det

c l c l
ijl c
c l c l c l

g J J
J

J J J

 
  

  
� (C24)

with the conversion relations:

2 ,c lu u
J

v v




   
   

  
� (C25)

2 .l c uu
J

vv




  
   

   
� (C26)

C4 Conversions of vector components to the local orthogonal coordi-939 nates at cell interfaces

The preparation of the Riemann solver requires the wind vectors to be projected to the local orthogonal 
coordinates at the cell interfaces. Therefore, at cell interfaces in x-direction:

sin ,xu u   � (C27)

cos ,xu u v v    � (C28)

or:

sin 0
,

cos 1

x

x

u u
vu




     
      
      


� (C29)

with inversion:
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1 0
sin
cos 1
sin

x

x

uu
v u







 
    
    
        




� (C30)

At cell interfaces in y-direction:

sin ,yu v   � (C31)

cos ,xu v u u    � (C32)

or:

0 sin
,

1 cos

y

y

u u
vu





     
      
      


� (C33)

with inversion:

cos 1
sin
1 0

sin

y

y

uu
v u








     
   
       




� (C34)

C5 Projecting the governing equations to the curvilinear coordinates

A small optimization can be observed from the above subsections. With basis vectors 1̂e  and 2ê  being restrict-
ed to unit length, many vector conversions can be carried out with simple operations using pre-calculated 
values of   sin α and cos α. Therefore, the model saves considerable memory storage and computational cost 
by dropping many metric matrices and reducing operation counts. Moreover, the metric terms generation 
are more flexible in arbitrary gnomonic projections and simpler than most of the literature.

Projecting the continuity equation and the vector-invariance form momentum equation to the curvilinear 
coordinates yields:

   1 ,h ghu ghv
t x yg

   
      

 � (C35)

   ˆ Π Φ ,s
u gv f K
t x

 
    

 
� (C36)

   ˆ Π Φ ,s
v gu f K
t y

 
     

 
� (C37)

with the relative vorticity and the kinetic energy defined by:

1 ,v u
x yg


  

    
� (C38)

 1 .
2

K uu vv  � (C39)

These two terms can be further rearranged and optimized with better finite-volume representations in the 
numerical discretization process.
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Data Availability Statement
The source code is hosted at https://doi.org/10.5281/zenodo.4287609. The resulting data is at https://doi.
org/10.5281/zenodo.4276378. This report was prepared by Xi Chen under award NA18OAR4320123 from 
the National Oceanic and Atmospheric Administration, U.S. Department of Commerce. The statements, 
findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the 
views of the National Oceanic and Atmospheric Administration, or the U.S. Department of Commerce.
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